This documentation is automatically generated by online-judge-tools/verification-helper
行列の累乗を求めるアルゴリズム。
matrix_pow(A: Sequence[Sequence[int]], k: int, MOD: int) -> List[List[int]]
$n$ 次正方行列 $A$ について $A^k$ を返す。行列の各要素は $\mathrm{MOD}$ で割った余りをとる。計算量 $O(n^3 \log k)$
matvec_mul(A: Sequence[Sequence[int]], vec: Sequence[int], MOD: int) -> List[int]
サイズ $n \times m$ の行列 $A$ と $m$ 次元のベクトル $v$ (vec
) について $Av$ を返す。計算量 $O(nm)$
def matrix_pow(A, k, MOD):
def matrix_mul(A, B, MOD):
C = [[0] * size for _ in range(size)]
for i in range(size):
for k in range(size):
for j in range(size):
C[i][j] = (C[i][j] + A[i][k] * B[k][j]) % MOD
return C
if len(A) != len(A[0]):
raise ValueError('square matrix expected')
size = len(A)
B = [[0] * size for _ in range(size)]
for i in range(size):
B[i][i] = 1
while k > 0:
if k & 1:
B = matrix_mul(A, B, MOD)
A = matrix_mul(A, A, MOD)
k = k // 2
return B
def matvec_mul(A, vec, MOD):
if len(A[0]) != len(vec):
raise ValueError('dimension mismatch between matrix and vector')
h, w = len(A), len(A[0])
res_vec = [0] * h
for i in range(h):
for j in range(w):
res_vec[i] += A[i][j] * vec[j]
res_vec[i] %= MOD
return res_vec
Traceback (most recent call last):
File "/opt/hostedtoolcache/Python/3.12.4/x64/lib/python3.12/site-packages/onlinejudge_verify/documentation/build.py", line 71, in _render_source_code_stat
bundled_code = language.bundle(stat.path, basedir=basedir, options={'include_paths': [basedir]}).decode()
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/hostedtoolcache/Python/3.12.4/x64/lib/python3.12/site-packages/onlinejudge_verify/languages/python.py", line 96, in bundle
raise NotImplementedError
NotImplementedError